成年人色网站_91精品久久久久久久久99绯色_国产日韩精品在线播放_国产日产精品久久久久兰花_日本成人福利视频_99国内精品久久久久影院

Xiangyang Gaolong Phosphorus Chemical Co., Ltd.

Address: No. 132 South Road, Nanzhang County, Xiangyang City, Hubei Province

Tel/Fax:0710-5231641

Mobile phone: 15926890948

Contact person: Mr. wu

Mobile phone: 13377973557

Contact person: Mr. Zhou

E-mail: 13377973557@vip.163.com

Website: www.hljjgbyq.com


聯系我們

13377973557
Industry dynamics Position: Home ? 信息動態  ? Industry dynamics
Brief Analysis of the Main Treatment Methods of Phosphoric Acid Wastewater in China

Sources:Xiangyang Gaolong Phosphorus Chemical Co., Ltd. | PublishDate:2019.03.14

Excessive phosphorus and nitrogen in water will accelerate eutrophication of water body. This phenomenon is more serious in China, which has brought great harm to industry, aquatic industry, agriculture and tourism. Increased concentration of nitrogen and phosphorus is the cause of algae reproduction, and phosphorus is the key factor. Therefore, how to effectively reduce the concentration of phosphorus in sewage is of great significance for eliminating pollution and protecting the environment.

At present, domestic and foreign wastewater phosphorus removal technologies mainly include biological and chemical methods. Biological processes such as A/O, A2/O, UCT process are mainly suitable for the treatment of low concentration and organic phosphorus-containing wastewater; chemical and physical chemical methods mainly include coagulation and precipitation, crystallization, ion exchange adsorption, electrodialysis, reverse osmosis and other processes, mainly suitable for the treatment of inorganic phosphorus-containing wastewater.

However, in many industrial processes, high concentration of phosphorus-containing wastewater often appears. There is no strict definition of high concentration phosphorus wastewater in current research. It is generally considered that as long as the phosphorus content in wastewater is higher than that in domestic wastewater or the total phosphorus concentration is more than 100 mg/L, it is called high concentration wastewater. High concentration phosphorus wastewater is difficult to be removed by a single biological or chemical method, even if it can be removed, it will cause a great burden on the whole single biological or chemical treatment process, which will reduce the treatment effect of the whole treatment process or can not run continuously.

1 Source of Phosphorus in Water

Phosphorus discharged into lakes mostly comes from domestic sewage, factory and animal husbandry wastewater, fertilizer loss from forest farmland and rainfall and snow. Compared with the previous items, the phosphorus content in rainfall and snow is lower. Investigations show that the average phosphorus concentration in rainfall is lower than O.04mg/L, and in snow is lower than O.02mg/L. Taking domestic sewage as an example, the daily phosphorus discharge per person is about 1.4-3.2g, and the contribution of various detergents is about 70%. In addition, cooking and washing water, as well as phosphorus in feces and urine also have considerable content. Plant phosphorus emissions mainly come from fertilizer, medicine, metal surface treatment, fiber dyeing and fermentation and food industry. Among the phosphorus inflow, domestic sewage accounted for 43.4% of the total, the others accounted for 20.5%, 29.4% and 6.7%, domestic sewage 43.4%, factory and animal husbandry wastewater 20.5%, fertilizer loss 29.4% and snowfall 6.7%.

Forms of phosphorus in Wastewater

Phosphorus in wastewater exists in the form of orthophosphate, polyphosphate and organic phosphorus. Because of the different sources of wastewater, the total phosphorus and various forms of phosphorus content are quite different. Typical domestic sewage contains 3-15 mg/L of total phosphorus (in terms of phosphorus); in fresh raw domestic sewage, the distribution of phosphate is roughly as follows: orthophosphate 5 mg/L (in terms of phosphorus), triphosphate 3 mg (in terms of phosphorus), pyrophosphate lmg, L (in terms of phosphorus) and organic phosphorus. For these reasons, orthophosphate is the main concern in the process of phosphorus removal from wastewater. The ionization equilibrium of phosphoric acid restricts the ionization of orthophosphate in water, while producing H3P04, H2P041, HP042 1 and P04. The concentration distribution of each phosphorous group varies with the pH value. Hydrogen phosphate and dihydrogen phosphate are the main forms in typical domestic sewage with pH 6-9.

2 Chemical Treatment of Phosphorus-Containing Wastewater

Chemical precipitation method is to use a variety of cations to combine with phosphate in wastewater to form precipitation substances, so that phosphorus can be effectively separated from wastewater; electrodialysis phosphorus removal is a membrane separation technology, it is only a method of concentrating phosphorus, it can not fundamentally remove phosphorus itself; biological method is now mostly used in the situation of low phosphorus content in municipal wastewater treatment plants. Compared with other methods, chemical precipitation method has the advantages of high operating flexibility, high phosphorus removal efficiency and simple operation.

I. Phosphorus Removal by Calcium Method

Among the precipitation methods for phosphorus removal by calcium method, the main chemical precipitators are aluminium ion, iron ion and calcium ion. Among them, the equilibrium constant of hydroxyapatite formed by lime and phosphate is the largest and the effect of phosphorus removal is the best. When lime is added to wastewater containing phosphorus, calcium ion reacts with phosphate to form precipitation. The reactions are as follows: 5Ca2 +7OH-+3H2PO4-=Ca5 (OH) (PO4) 3+6H(1) side reaction: Ca2 +CO32-=CaCO3(2) reaction (1) The equilibrium constant KS0=10-55.9. From the above reaction, it can be seen that the phosphorus removal efficiency depends on the relative concentration of anions and pH value. Formula (1) shows that phosphate reacts with calcium ions under alkaline conditions to form calcium hydroxyphosphate, and the reaction tends to be complete with the increase of pH value. When the pH value is greater than 10, the phosphorus removal effect is better and the mass concentration of phosphate in effluent can be ensured to be less than 0.5mg/L. Reaction (2) means that calcium ions react with calcium ions. The formation of calcium carbonate by carbonate reaction in wastewater is very important for phosphorus removal by calcium method. It not only affects the dosage of calcium, but also produces calcium carbonate which can be used as a weight-increasing agent to condensate and clarify wastewater.

The primary reaction and precipitation in the above process are mainly zinc removal, control of pH=8.5-9.0, adding polyaluminium chloride. The second reaction and precipitation are mainly phosphorus removal by calcium method, and control of pH=11-11.5. The effluent is discharged or reused after neutralization, and the effluent quality reaches the first level standard.

Key technologies:

The key technology of phosphorus removal by calcium method is using calcium chloride or lime as reagent, using mechanical mixing reactor and high efficiency inclined tube precipitator to control appropriate reaction, mixing strength, precipitation surface load and reaction pH value.

Two commonly used phosphorus removal substances:

1. slag

Slag is a solid waste produced in the process of iron and steel smelting. It is mainly composed of CaO, FeO, MnO, SiO 2, Fe2O3, P2O5, Cr2O5, Al2O3 and other oxides. It has many excellent characteristics. Each component can be used. The experimental study of this method is to add 200 mL simulated phosphorus-containing wastewater and a certain amount of slag to several plug-cone bottles, which are placed on an oscillator and oscillated at room temperature. The adsorption reaction is filtered after reaching equilibrium at a fixed time, then the concentration of phosphorus in the clear solution is tested, and then the adsorption amount and phosphorus removal rate on the adsorbent are calculated by comparing the initial concentration and equilibrium concentration of phosphorus in the solution. Research shows:

(1) With the increase of slag dosage, the removal rate of phosphorus increases, but the adsorption capacity decreases.

(2) The adsorption capacity increases with time at the beginning, but it tends to be stable when the adsorption time is longer than 2 hours.

(3) The adsorption capacity increases with the increase of phosphorus concentration in wastewater.

(4) Temperature has little effect on slag adsorption.

(5) The pH value of the solution has an important influence on the adsorption effect. When the pH value is 7.56, the removal rate of phosphorus is the highest.

Therefore, when the concentration of phosphorus in waste water is 2-13 mg/L, the dosage of slag is 5 g/L, the pH is 7.56, and the adsorption time is 2 h, the removal rate of phosphorus can reach more than 99%, the concentration of residual liquid is also lower than the national discharge standard, and the method is safe and reliable, and will not produce secondary pollution.

2. Adding Lime

When a large amount of lime is added to the wastewater containing phosphorus, hydroxyapatite is formed by adjusting the pH value to 10.5-12.5. The precipitate is stable and the equilibrium constant is large. The equilibrium constant of Ca10(OH)2(PO4)6 is 90, which is 3-4 times larger than that of phosphate precipitate formed by aluminium and iron salts.

The larger the equilibrium constant is, the more stable the precipitate is, the better the precipitation effect is, the more thorough the dephosphorization is, the better the solid-liquid separation effect is, and the treatment of phosphorus-containing wastewater is up to the standard, P < 0.5mg/L. Adding lime can improve the pH value of wastewater and remove phosphorus, at the same time, the co-precipitation of petroleum and CODcr in wastewater can be purified, and the wastewater can meet the discharge standards. The sludge produced by lime treatment of phosphorus-containing wastewater is large. Sludge from the bottom of inclined-tube sedimentation tank is discharged into sludge concentration tank through bottom pipe, and the sludge is discharged 1-2 times a day, so as to avoid dry plugging. After the sludge concentration tank is concentrated, the lower thick sludge is pumped into the plate and frame filter press and filtered to separate the solid and liquid, and the dry slag is packed and transported.

3. Mixture-assisted chemical precipitation

The compound precipitator used in this method is magnesium chloride and ammonium hydrogen phosphate, which can produce slow-acting compound fertilizer while removing phosphorus. The reaction principle is as follows:

HPO42-+Mg2+ NH4++ 6H2O = MgNH4PO4 +H+

PO43-+Mg2+ NH 4++ 6H 2= MgNH 4 PO4 6H 2 reacts to produce MgNH 4 PO4 6H 2, which is easy to filter. For wastewater with low phosphorus concentration, the discharge standard can be achieved by one treatment. However, when treating wastewater with high phosphorus concentration, it is difficult to reach the standard. It is necessary to add composite coagulant PAC (polyaluminium chloride) and PAM (polyacrylamide ammonium). The coagulation of PAC is mainly through. PAM is an anionic macromolecule flocculant, which can be dispersed quickly and evenly after adding solution to form flocculant by bridging precipitation ions in aqueous solution and precipitating them [4]. The experimental results show that PAM can be used as coagulant assistant and cooperate with coagulant PAC to achieve good coagulation effect. Compound coagulation is used.

CHARACTERISTICS OF CHEMICAL PHOSPHORUS REMOVAL METHOD

Chemical phosphorus removal is essentially a physical and chemical process. Its advantages are stable and reliable treatment effect, simple operation and high elasticity, sludge will not re-release phosphorus in the process of treatment and disposal, and the ability to withstand impact load is also strong. The disadvantage is that chemical phosphorus removal process will produce a large number of water-bearing chemical sludge, which is difficult to treat. In addition, the higher the cost of the reagent, the higher the concentration of residual metal ions and the higher the chroma of the effluent.

主站蜘蛛池模板: 美女一级黄色毛片_野花在线无码视频在线播放_污黄啪啪网_福利片网站_亚洲v国产v_国产三级在线免费观看_色午夜婷婷_www.四虎com | xxxwww高潮视频hd_精品九九九九_小峰色戒网站_亚洲高清中文字幕免费_99在线精品视频免费观看20_96超碰在线_久久影院一区二区_中文无码一区二区不卡AV | 91手机在线播放_xxxxhd中国_少妇激情AV一区二区三区_日本a人精品_高大丰满40岁东北少妇_熟女熟妇人妻在线视频_99在线在线视频免费视频观看_日韩国产成人在线 | 无码专区永久免费AV网站_日本少妇被黑人xxxxx软件_狂野欧美激情性XXXX按摩_av喷水高潮喷水在线观看com_豆奶导航_中国av一级片_欧美一区二区三区国产精品_国产精品丝袜肉丝出水 | 激情视频91_成人免费视频软件网站_亚洲欧美色中文字幕在线_变态视频在线观看_欧洲日韩在线观看_久久久精品在线_亚洲天堂男人影院_看毛片网 | 天天躁日日躁狠狠的躁天龙影院_日韩网站在线观看_成年人视频在线看_国产乱码精品一区二区三区麻豆_久久九九国产精品_一本一道AV无码中文字幕﹣百度_99热这里只有精品4_嫩草91在线 | 黄色视屏在线看_日韩成人黄色_中文精品一区二区三区四区_毛片视频在线免费观看_国产日韩精品中文字无码樱花_亚洲视频在线免费播放_麻豆视频网页_av久久伊人精品中文字幕 | 男人操女人视频免费_黄色免费大全_成人欧美在线视频_永久免费无码网站在线观看_一个人看的www网站_青娱乐这里只有精品_手机福利在线_最新中文字幕在线视频 | AAA无码偷拍亚洲_欧美成人aaaaa片_午夜影院男女_天天综合视频_国产精品亚洲专区在线观看_www.国产网站_37人体做爰久久久久久_爱射综合网 | 老师粉嫩小泬喷水视频90_台湾毛片_9191网站_久久激情欧美_www.日本黄色_日韩爱爱片_91麻豆免费在线观看_欧美黑人肉体狂欢大派对 韩国女主播一区二区三区_亚洲综合色自拍一区_精品视频一区二区三区中文字幕_国产女人高潮抽搐叫床视频_jiujiure国产_97aⅰ内射白浆蜜桃精品_又硬又粗又大一区二区三区视频_亚洲永久免费 | 国产成人无码精品久久久免费_国产xxxx_欧美成人免费_97超碰97_色欲蜜桃AV无码中文字幕_老司机精品在线_九色视屏_av片免费看 | 亚洲一二三四果冻传媒_免费精品视频一区_国产伦一区二区三区久久_国产午夜精品一区二区三区欧美_午夜久久久久久久久久久久_国产亚洲h网综合h网_福利国产在线_亚洲美女久久久 | 午夜久久福利_欧美日韩免费专区在线_成人影院yyyyy111111_最黄一级片_在线免费看a_国产一级黄色aaaa片_日韩视频在线第一页_午夜国产 | 日韩av高清在线_亚洲欧洲日本一区二区三区_成年人黄色大片_性色AV无码中文AV有码VR_精品一区二区久久久久久久网站_97人操_精品国产亚洲一区_久久国产青偷人人妻潘金莲 久久人人爽天天玩人人妻精品_专干日本老妇HD_国产精品xxx视频_黄色片免费_国产精品一区二区福利视频_免费精品一区二区三区第35_国产精品色吧国产精品_老美黑人狂躁亚洲女 | 久久99精品久久久秒播_视频一区二区视频_cijilu在线视频最新地址_看全色黄大色大片女人爽吗_国产精品久久秋霞鲁丝片_久久高清毛片_青青青在线视频免费观看_色窝窝无码一区二区三区 | 亚洲乱亚洲乱妇无码_午夜dj高清www免费视频_久久久久国产A免费观看RELA_国产在线一二区_特黄免费av_AV不卡在线永久免费观看_日本熟妇洗澡videos_与子乱对白在线播放单亲国产 | 成人小视频在线观看免费_麻豆精品久久久久久中文字幕无码_国产成人麻豆精品午夜福利在线_精品成av人一区二区三区_影视先锋男人无码在线_青青草青娱乐在线_天操夜夜操_精品一区毛片 | 人人干在线_www.欧美日本_第四色狠狠_亚洲美女视频在线观看_国产a一级毛片爽爽影院_欧洲激情网_99re免费视频_欧美特黄特色视频 | 人人爽人人爽人人片AV_特级黄一级播放_久久作爱视频_米奇午夜_欧美xxxxx18_亚洲一区二区在线免费视频_免费黄色片子_在线观看成年人网站 | 日韩第一页在线观看_看av在线_一区免费_日韩在线视频精品_91色爱_国产成人精品av在线_9区中文字幕在线_成熟丰满熟妇高潮XXXXX视频 | 东京热无码人妻一区二区av_欧洲色婷婷_天天撸日日夜夜_浓毛熟女看18p大黑p_99国产观看免费视频_毛片毛片毛片毛片毛片毛片小_一区二区三区产品乱码的解决方法_在线涩涩免费观看国产精品 | 成年午夜无码AV片在线观看_狠狠躁日日躁狂躁夜夜躁av_精品国产九九_久综合网_91爱网_天天色天天_japanese教师中文字幕_柠檬导航在线 | 青热久思思_成人AV导航_mmm·www看片免费观看_麻豆文化传媒www网站入口_国产乱码一区二区三区免费_国产成人啪精品午夜在线观看_日本黄色片视频_国产乱一区二区 | www.俺去_午夜免费1000_jiujiure精品视频播放_国产第一精品_久久综合香蕉国产蜜臀av_国产精品视频区1_无码少妇高潮喷水A片免费_久久国产劲暴∨内射新川 | 色妺妺在线视频_亚洲xxxx天美_蜜臀av国产精品久久久久_综合亚洲AV图片区_亚洲精品av久久久久久久影院_国产人久久人人人人爽_久久影视精品_在线观看亚洲一区二区 | 人妻无码αv中文字幕久久琪琪布_正在播放亚洲一区_日韩欧美在_狠狠色噜噜狠狠狠777米奇小说_婷婷综合基地俺也来_成人依依网_久久久这里有精品999_国产精品久久久久一区二区三区 | 色网免费观看_成人无毒网_91亚洲国产成人久久精品麻豆_粉嫩metart女人下部_性爱免费视频_东京热人妻中文无码AV_午夜DJ国产精华日本无码_国语一区 | 色伊人色_中国一级毛片免费观看_国产无套精品一区二区_绝顶高潮videos_在线视频免费观看www_在厨房拨开内裤进入毛片_日穴视频在线观看_被公连续侵犯中文字幕 | www.俺去_午夜免费1000_jiujiure精品视频播放_国产第一精品_久久综合香蕉国产蜜臀av_国产精品视频区1_无码少妇高潮喷水A片免费_久久国产劲暴∨内射新川 | 成人xxxx视频_sm脚奴调教丨踩踏贱奴_久久国产精品久久久_成人免费视频www在线观看我_日本天堂一区二区_www.四虎影视.com_陌陌影视在线观看免费_国产一级淫片a免费播放口之 | 91久久久久久久久久久久久久_老熟女毛茸茸_国产精品人人妻人人爽人人牛_日本乱人伦AⅤ精品_免费日韩网站_国产无遮挡又黄又大又爽_人妻少妇中文字幕久久_国精产品一码一码三MBA | 国产美女网站视频_先锋中文字幕在线资源_免费中文字幕日产乱码_97国产婷婷视频_91精品久久久久久9s密挑_久久99精品久久久久久琪琪_三区影院_国语对白做爰xxxⅹ性69视频 | 日本一二三区在线观看_国产精品国产三级国产在线观什_老太脱裤让老头玩ⅹxxxx_岛国色网_欧美视频无砖专区一中文字目_五月丁香六月婷综合缴情在线_4虎海外永久域站_亚洲在线日韩 | 欧美日韩综合在线_日日婷婷夜日日天干A片_东京一本一道一二三区_亚洲欧美在线播放_国产在线高清视频无码_亚洲午夜无码毛片av久久久久久_亚洲福利av_杨幂ai换脸视频 | 一级一级毛片免费看_国产福利在线观看无码卡一_日本免费大片免费视频_欧美大片aaaa_av大片在线免费观看_久久AV无码乱码A片无码_真实人与人性恔配视频_国产日本一区 | 天天草网站_国产成人视屏_精品欧美一区二区在线观看欧美熟_国产午夜精品理论片a级探花_av在线播放网址_综合图区亚洲欧美另类图片_亚洲黄色录像片_国产午夜亚洲精品理论片大丰影院 | 国产精品免费视频xxxx_日本精品一区二区三区四区的功能_国产午夜视频免费_欧美不卡在线视频_日日嗨av一区二区三区四区_国产高清乱伦自拍_无码男男肉片在线观看_国产午夜毛片 | 日韩免费黄色_少妇人妻呻吟青椒BOBX_911国产自产精品a_伊人久久精品亚洲午夜_亚洲日本乱码一区二区三区_国产91黄色_亚洲欧美日韩视频高清专区_成人天堂网 | 久久久久久久亚洲视频_在线播放一区二区精品视频_色噜噜在线播放_热九九精品_亚洲成人aa_国产各种高潮合集在线观看_毛片网此_世界一级毛片 | 色视频免费观看_一区二区天堂_久久久久久亚洲精品不卡4k岛国_蜜桃久久精品乱码一区二区_年轻的少妇做a_国产精品国模大尺度视频_无遮挡十八禁污污网站免费_91色在线播放 | 国产青草视频在线观看视频_高清videosgr欧美熟妇_国产暴力强伦轩1区二区小说_粉嫩国产一区二区三区免费_亚洲免费成人在线_直接看片的av网址在线看片_日韩熟女精品一区二区三区_www久久 |